functor - definição. O que é functor. Significado, conceito
DICLIB.COM
Ferramentas linguísticas em IA
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:     

Tradução e análise de palavras por inteligência artificial

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é functor - definição

IN CATEGORY THEORY, A MAPPING BETWEEN CATEGORIES THAT PRESERVES THEIR STRUCTURE (IDENTITY MORPHISMS, COMPOSITION OF MORPHISMS)
Covariant functor; Contravariant functor; Cofunctor; Functorial; Functors; Functoriality; Endofunctor; Bifunctor; Covariance and contravariance of functors; Identity functor; Multifunctor; Functor (category theory); Covariance (categories); Opposite functor; Constant functor; Selection functor; Category homomorphism; Dual functor; Covariance and contravariance (category theory)

functor         
In category theory, a functor F is an operator on types. F is also considered to be a polymorphic operator on functions with the type F : (a -> b) -> (F a -> F b). Functors are a generalisation of the function "map". The type operator in this case takes a type T and returns type "list of T". The map function takes a function and applies it to each element of a list. (1995-02-07)
functor         
['f??kt?]
¦ noun Logic & Mathematics a function; an operator.
Functor         
In mathematics, specifically category theory, a functor is a [between categories]. Functors were first considered in [[algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces.

Wikipédia

Functor

In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

The words category and functor were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used functor in a linguistic context; see function word.